
CRYPTOGRAPHIC PROTOCOLS OF SIGNAL AND SIGNAL BASED INSTANT
MESSAGING APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HİLAL DİNÇER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

AUGUST 2022

Approval of the thesis:

CRYPTOGRAPHIC PROTOCOLS OF SIGNAL AND SIGNAL BASED
INSTANT MESSAGING APPLICATIONS

submitted by HİLAL DİNÇER in partial fulfillment of the requirements for the de-
gree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Mathematics, METU

Dr. Pınar Gürkan Balıkçıoğlu
Co-supervisor, Cryptographer, Ankara

Examining Committee Members:

Prof. Dr. Murat Cenk
Cryptography, IAM, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Mathematics, METU

Assoc. Prof. Dr. Fatih Sulak
Mathematics, Atılım University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: HİLAL DİNÇER

Signature :

iv

ABSTRACT

CRYPTOGRAPHIC PROTOCOLS OF SIGNAL AND SIGNAL BASED
INSTANT MESSAGING APPLICATIONS

DİNÇER, HİLAL

M.S., Department of Cryptography

Supervisor :Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Dr. Pınar Gürkan Balıkçıoğlu

August 2022, 64 pages

Instant messaging applications have replaced classical messaging in recent years. The

fact that instant messaging applications transmit messages over the internet, therefore,

being free and fast, played a major role in this rise. However, being internet-based has

brought disadvantages as well as advantages. There are risks such as obtaining the

message, changing the message, etc. by third parties. To avoid these risks, messages

are encrypted, the sender is authenticated and their integrity is shown. However, with

the developing quantum technology, it turned out that these algorithms will be broken

in the near future. Now, studies are being made to make these algorithms resistant to

post-quantum. In this thesis study, the key generation, key exchange, and encryption

mechanisms used by the Signal Protocol in one-to-one communications, which is one

of the most secure systems, are explained in detail. It is explained how open source

Linphone, Xabber, Wire, and Element applications developed on the basis of Signal

Protocol use Signal Protocol. In addition, in this thesis, the parameters used by Signal

and Wire applications, but not specified in their documents, were obtained from open

sources and added. Finally, the methods used to make the Signal Protocol quantum

v

resistant are presented.

Keywords: Cryptography, Cryptographic protocols, Signal, Double Ratchet, Proto-

cols of Instant Messaging Applications, Key Exchange, Encryption, Post-quantum,

Quantum

vi

ÖZ

SİGNAL VE SİGNAL TABANLI ANLIK MESAJLAŞMA
UYGULAMALARINDAKİ KRİPTOGRAFİK PROTOKOLLER

DİNÇER, HİLAL

Yüksek Lisans, Kriptoloji Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Dr. Pınar Gürkan Balıkçıoğlu

Ağustos 2022 , 64 sayfa

Anlık mesajlaşma uygulamaları son yıllarda klasik mesajlaşmanın yerini almıştır. Bu

yükselişte anlık mesajlaşma uygulamalarının mesajları internet üzerinden iletmesi,

dolayısıyla ücretsiz ve hızlı olması büyük rol oynamıştır. Ancak internet tabanlı ol-

ması avantajların yanında dezavantajları da beraberinde getirmiştir. Mesajın üçüncü

şahıslar tarafından alınması, mesajın değiştirilmesi vb. riskler vardır. Bu risklerden

kaçınmak için mesajlar şifrelenir, gönderenin kimliği doğrulanır ve bütünlükleri gös-

terilir. Ancak gelişen kuantum teknolojisi ile yakın gelecekte bu algoritmaların kırı-

lacağı ortaya çıktı. Günümüzde, bu algoritmaları post-kuantuma dayanıklı hale getir-

mek için çalışmalar yapılıyor. Bu tez çalışmasında, en güvenli sistemlerden biri olan

Signal Protokol’ünün bire bir iletişimde kullandığı anahtar üretimi, anahtar değişimi

ve şifreleme mekanizmaları detaylı olarak anlatılmıştır. Signal Protokol’ü temel alı-

narak geliştirilen açık kaynaklı Linphone, Xabber, Wire ve Element uygulamalarının

Signal Protokol’ünü nasıl kullandığı açıklanmıştır. Ayrıca bu tezde Signal ve Wire uy-

gulamalarının kullandığı ancak dökümantasyolarında belirtilmeyen parametreler açık

kaynaklardan elde edilmiş ve eklenmiştir. Son olarak Signal Protokol’ünü kuantuma

vii

dayanıklı hale getirmek için kullanılan yöntemlerden bahsedilmiştir.

Anahtar Kelimeler: Kriptografi, Kriptografik Protokoller, Signal, Double Ratchet,

Anlık Mesajlaşma Uygulamalarının Protokolleri, Anahtar Değişimi, Şifreleme, Ku-

antum, Kuantum Sonrası

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Assoc. Dr. Ali

Doğanaksoy, for providing guidance and feedback throughout this thesis. Further-

more, I would like to thank my co-supervisor Dr. Pınar Gürkan Balıkçıoğlu for her

support and encouragement. I would not have made it through my master’s degree

without them.

I also would like to thank Prof. Dr. Murat Cenk, who did not spare his valuable

opinions and help when I needed it.

I would like to express my very great appreciation to my parents and my sister for

their love and prayers. Knowing that they are with me in every difficulty I face and

feeling their endless support has always given me strength.

Finally, to my caring, loving and supportive husband, Muharrem, my deepest thanks

for his patience throughout this process and for always encouraging me. My heartfelt

thanks.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Related Works . 2

1.2 Our Contributions . 2

1.3 Organizations . 3

2 PRELIMINARIES . 5

2.1 Notation . 5

2.2 Definitions . 6

2.2.1 Cryptographic Hash Functions 6

2.2.2 HMAC (Message Authentication Code Mechanism Based on
Cryptographic Hash Function) 6

xi

2.2.3 KDF (Key Derivation Function) 7

2.2.4 HKDF (HMAC-based Extract-and-Expand Key Derivation Func-
tion) . 7

2.2.5 AEAD (Authenticated Encryption with Associated Data) . . . 8

2.3 Post-Quantum Cryptographic Algorithms 8

2.3.1 KEM(Key Encapsulation Mechanism) 8

2.3.2 SIDH(Supersingular Isogeny Diffie Hellman) 8

2.3.3 CSIDH(Commutative Supersingular Isogeny Diffie-Hellman) . 10

3 SIGNAL PROTOCOL . 11

3.1 Key Exchange . 12

3.1.1 Double Ratchet . 15

3.2 Encryption . 22

4 SIGNAL AND SIGNAL BASED PROTOCOLS 23

4.1 SIGNAL . 23

4.1.1 Key Exchange . 23

4.1.1.1 Double Ratchet . 25

4.1.2 Encryption . 26

4.2 LINPHONE . 30

4.2.1 Key Exchange . 31

4.2.1.1 Double Ratchet . 32

4.2.2 Encryption . 33

4.3 XABBER . 35

4.3.1 Key Exchange . 35

xii

4.3.1.1 Double Ratchet . 36

4.3.2 Encryption . 37

4.4 WIRE . 38

4.4.1 Key Exchange . 38

4.4.1.1 Double Ratchet . 40

4.4.2 Encryption . 41

4.5 ELEMENT (RIOT.IM) . 42

4.5.1 Key Exchange . 42

4.5.1.1 Double Ratchet . 43

4.5.2 Encryption . 44

5 POST-QUANTUM ALGORITHMS FOR SIGNAL AND SIGNAL BASED
ALGORITHMS . 45

6 CONCLUSION . 51

REFERENCES . 53

A DIFFIE-HELLMAN KEY EXCHANGE 57

B ECDH KEY EXCHANGE . 59

C AES . 61

D CHACHA20 . 63

xiii

LIST OF TABLES

Table 3.1 X3DH parameters recommended for protocols that will use the Sig-

nal protocol . 12

Table 4.1 X3DH parameters for Signal protocol 23

Table 4.2 X3DH parameters for LIME Protocol 31

Table 4.3 X3DH parameters for OMEMO Protocol 36

Table 4.4 X3DH parameters for Proteus protocol 39

Table 4.5 X3DH parameters for Olm Protocol 42

Table 5.1 Key sizes in Curve25519, SIDH503 and SIDH751 [23] 47

Table 5.2 Key sizes in Curve25519, CSIDH-512 and CSIDH-1024 [11] 47

Table 5.3 Comparison of studies in terms of Diffie-Hellman security properties 50

xiv

LIST OF FIGURES

Figure 3.1 KDF Chain [38] . 16

Figure 3.2 Single Ratchet [38] . 17

Figure 3.3 Diffie-Hellman Key Exchange I [38] 18

Figure 3.4 Diffie-Hellman Key Exchange II [38] 18

Figure 3.5 Diffie-Hellman Key Exchange III [38] 19

Figure 3.6 Sending and Receiving Chain Keys [38] 19

Figure 3.7 Diffie-Hellman Ratchet [38] . 20

Figure 3.8 Old Keys Deletion [38] . 21

Figure 3.9 Symmetric Key Ratchet [38] 21

Figure 3.10 Key computation for the next message [38] 22

Figure 4.1 Computation of shared secret key 24

Figure 4.2 Computation of the first root key and chain key 24

Figure 4.3 Computation of the next root key and chain key 25

Figure 4.4 Computation of the next chain key and the message key 26

Figure 4.5 Computation of AES_KEY , HMAC_KEY and IV 27

Figure 4.6 Encryption and authentication 28

Figure 4.7 Encryption of plaintext . 29

xv

Figure 4.8 AES in CBC mode with PKCS#5 padding 29

Figure 4.9 Computation ofAD and concatenation of ciphertext and HMAC

output . 29

Figure 4.10 Computation of associated data 30

Figure 4.11 Double Ratchet Message encryption policy 33

Figure 4.12 Cipher Message encryption policy 34

Figure 4.13 Computation of shared secret key 39

Figure 4.14 Computation of the first root and chain key 39

Figure 4.15 Computation of the next root and chain key 40

Figure 4.16 Computation of the next chain key and the message key 41

Figure 4.17 Encryption I . 41

Figure 4.18 Encryption II . 42

Figure 5.1 Signal’s X3DH key exchange with KEMs replacing the Diffie-

Hellman operations. The optional ephemeral prekey (combination) shown

in blue[16]. 48

Figure 5.2 Signal’s X3DH key exchange with split KEMs replacing the

Diffie-Hellman operations. The optional ephemeral prekey (combina-

tion) shown in blue [16]. 49

Figure A.1 Diffie-Hellman Key Exchange 57

xvi

LIST OF ABBREVIATIONS

X3DH Extended Triple Diffie Hellman

XEdDSA The protocol to create and verify Edwards-curve Digital Sig-

nature Algorithm compatible signatures

VXEdDSA Extends XEdDSA To Make It A Verifiable Random Function

EdDSA Edwards Curve Digital Signature Algorithm

SHA Secure Hash Algorithm

ECDH Elliptic Curve Diffie Hellman

AD Associated Data

AEAD Authenticated Encryption with Associated Data

HKDF Key Derivation Function based on HMAC Message Authenti-

cation Code

PRF Pseudo Random Function

KDF Key Derivation Function

MAC Message Authentication Code

HMAC Hash Based Message Authentication Code

SIV Synthetic Initialization Vector

CBC Cipher Block Chaining

AES Advanced Encryption Standard

XMPP Extensible Messaging and Presence Protocol

PGP Pretty Good Privacy

OTR Off-the-Record Messaging Protocol

IV Initialization Vector

PKCS Public Key Cryptography Standards

LIME Linphone Instant Message Encryption

xvii

GCM Galois/Counter Mode

IKM Input Key Metarial

OKM Output Key Metarial

KEM Key Encapsulation Mechanism

SIDH Supersingular Isogeny Diffie–Hellman Key Exchange

CSIDH Commutative Supersingular Isogeny Diffie–Hellman Key Ex-

change

xviii

CHAPTER 1

INTRODUCTION

Although instant messaging is done over the internet today, the history of instant

messaging is older than the internet and dates back to the 1960s. It was first used

in operating systems with multiple users such as Compatible Time-Sharing System

(CTSS) and Multiplexed Information and Computing Service (Multics)[24]. As so

networks developed, protocols spread over the network. Some of the protocols are

peer-to-peer protocols, while others are client to server protocols. As a result of the

widespread use of the Internet, it has begun to reach more and more users. Both

the increase in the number of users and the transmission of messages through public

channels made it easier for third parties to intervene. Thus, problems such as privacy,

message integrity, and authentication began to emerge.

The Signal Protocol was first published in 2010 as the Text Secure Protocol, whose

predecessor was OTR (Off-the-record Messaging). Later, TextSecure v2 and TextSe-

cure v3 were published and took the final form in 2016, taking the name Signal

Protocol. Signal protocol provides authentication, confidentiality, asynchronicity, in-

tegrity, causality preservation, destination validation, participant consistency, forward

and backward secrecy, message unlinkability, participation repudiation, and message

repudiation[41]. Thanks to these features, it has shown that it is one of the most

secure protocols by getting a full score of 7 out of 7 on the Electronic Frontier Foun-

dation (EFF) secure messaging scorecard[6] in 2014. Today, applications such as

Whatsapp [8], Facebook Messenger [2], Skype [7], which have the most users, also

use the Signal Protocol.

1

1.1 Related Works

An analysis of the Signal Protocol was published by Ruhr Univercity Bochum re-

searchers in 2014[25]. In this analysis, they focuson three main parts, key generation,

key exchange and authenticated encryption, were analyzed and basic security claims

were discussed. In addition, they have proven that the Signal TextSecure protocol can

achieve its alleged security targets if key registration is assumed to be done securely.

As a result, they found the Signal Protocol safe.

In October 2016, researchers from Oxford University, Queensland University of Tech-

nology and McMaster University published an formally the Signal protocol’s

analysis[19]. In this study, X3DH (Extended Triple Diffie-Hellman) key exchange

and Double Ratchet Protocols were analyzed and it was concluded that the Signal

protocol is cryptographically sound.

Of course, the studies we presented showed that the Signal Protocol is safe with cal-

culations made with classical computers. However, in 1997 Shor’s algorithm [39]

showed that public key algorithms are unstable against quantum computers. Because

of the cost, encryption operations are not done with public key algorithms, while key

exchanges are made with public key algorithms. Therefore, first of all, studies have

begun on quantum resistant algorithms that can replace public key algorithms. One of

them is the NIST Post-Quantum Standardization Process[3], which the National Insti-

tute of Standards and Technology (NIST) initiated in 2016. NIST aims to standardize

quantum resistant public key encryption and digital signature algorithms at the end

of this process. While a total of 69 applications were selected for NIST for the round

1, the process is currently in the round 4. The first algorithm to standardize has been

identified, and in round 4, four candidate will be considered for standardization.

1.2 Our Contributions

In this thesis study, Signal protocol and for those who want to use this protocol in

their own applications in the future, how to choose the parameters are explained.

The algorithms used in key exchange and encryption of Linphone, Wire, Xabber and

2

Riot.im that developed using Signal Protocol are explained. Similar and different

features in these applications are indicated. Thus, those who want to develop appli-

cations will have more than one sample in their hands for algorithm and parameter

selection.

Signal and Wire protocols have specified the algorithms they use in their documen-

tation, but not the parameters. These parameters were found from their open source

codes and brought to this study.

By compiling the studies on post quantum algorithms developed for key exchange

in the Signal protocol, we discussed the advantages and disadvantages of these algo-

rithms. By comparing the Diffie-Hellman security features, we decided which one is

more suitable for the Signal Protocol.

1.3 Organizations

The rest of this thesis is as follows:

In Chapter 2, all notations and some cryptographic primitives are used in protocols

are described.

In Chapter 3, Signal protocol is reported and for those who want to use this protocol,

how to choose parameters and algorithms is explained.

In Chapter 4, the algorithms and parameters used by the Signal protocol and the

protocols of other applications based on the Signal protocol are examined.

In Chapter 5, the algorithms and parameters for key exchange in post quantum world

are suggested for Signal and Signal based protocols are mentioned and algorithms

compared for Diffie-Hellman security features.

In Chapter 6, the thesis is summarized and possible future works are mentioned.

3

4

CHAPTER 2

PRELIMINARIES

2.1 Notation

The list of common notations in this thesis is given below.

• DR: Double Ratchet

• SK: Shared secret key

• IK: Identity key

• SPK: Signed prekey

• OPK: One-time prekey

• EK: Ephemeral key

• AD: Associated Data

• RK: Root key

• CK: Chain key

• MK: Message key

• ECDHout: The output of ECDH

• AES_KEY : The key is used in AES to encrypt the message

• HMAC_KEY : The key is used in HMAC for authentication

• AES_IV : The initial value is used in AES when encrypt the message

5

In this thesis, the term client is represented as Alice or Bob. The client is the one side

of the end-to-end encrypted communication.

2.2 Definitions

There are some definitions of cryptographic concepts used in this thesis.

2.2.1 Cryptographic Hash Functions

A hash function is a mathematical function which takes arbitrary-length input and

returns the fix-length output. Let H be a hash function and A be a input message then

H : A→ B, length of B is fix.

A hash function is a cryptographic hash function if it satisfies these three conditions.:

• One-way function: In practice, it is infeasible to reverse computation and get-

ting input message.

• Deterministic: For given the same messages m1 and m2, their hashes are the

same H(m1) = H(m2).

• Collision resistance: For given different messages m1 and m2, it should be

H(m1) ̸= H(m2).

Cryptographic hash functions are used in many areas of cryptography such as digital

signature, authentication, and message integrity etc.

2.2.2 HMAC (Message Authentication Code Mechanism Based on Cryptographic

Hash Function)

HMAC[29] is a Message Authentication Code (MAC) mechanism based on cryp-

tographic hash function with a secret key. HMAC satisfies both data integrity and

authentication. The length of HMAC output is depending on cryptographic hash

function used in the system and it is fix. The definition of HMAC in [29] as follow;

6

HMAC(K,m) = H

(
K ′ ⊕ opad||H

(
(K ′ ⊕ ipad)||m

))
K ′ =

 H(K), K is larger than block size

K, otherwise

(2.2.1)

In the definition;

- H is a hash function,

- m is the message,

- K is the secret key,

- K ′ is the derived key from secret key,

- opad is the block-sized outer padding, consisting of repeated bytes valued

0x5C

- ipad is the block-sized inner padding, consisting of repeated bytes valued 0x36

2.2.3 KDF (Key Derivation Function)

KDF is a cryptographic algorithm that derives cryptographically strong secret key

from a secret value such as a main key or a password.

2.2.4 HKDF (HMAC-based Extract-and-Expand Key Derivation Function)

HKDF[30] is a simple key derivation function based on HMAC. HKDF, firstly, takes

IKM (Input Key Material) and extract a fixed-length pseudorandom key. Then, it

expands the key into several additional pseudorandom keys.

7

2.2.5 AEAD (Authenticated Encryption with Associated Data)

AEAD[33] is an authenticated encryption format. AEAD has the ability to check the

integrity and authenticity of some Associated Data (AD) in addition to authenticated

encryption.

2.3 Post-Quantum Cryptographic Algorithms

This section contains some definitions used to make the Signal protocol post-quantum

robust.

2.3.1 KEM(Key Encapsulation Mechanism)

KEM is used to send shared secret key. In the quantum world, the public key algo-

rithms are not safe. Therefore, KEM is used instead of them. We can say that KEM

consists of three algorithms in general:

• Generate public-private key pair

• Encapsulate takes the public key as input and outputs the shared secret and

encapsulates this secret key

• Decapsulate takes the encapsulated secret key and the private key as input and

outputs the shared secret key

2.3.2 SIDH(Supersingular Isogeny Diffie Hellman)

SIDH [28] is a post-quantum crytographic algorithm which is used for key exchange.

There are many complex isogeny calculations in SIDH, but people who have a grasp

of Diffie-Hellman will understand SIDH easily. Let, firstly, generate public parame-

ters:

• A prime p = lA
eA · lBeB · f ± 1, where lA and lB are different small primes , eA

and eB are large exponents and f is small cofactor

8

• A supersingular elliptic curve E over Fp2

• Fixed elliptic points PA, QA, PB, QB on E where PA and QA are in order lAeA ,

PB and QB are in order lBeB

In the key exchange, below steps are following:

• Alice,

– Generates two random integers mA, nA < (lA)
eA ,

– Generates RA := mA · (PA) + nA · (QA),

– Creates an isogeny mapping ϕA : E → EA and curve EA isogenous E

using RA and Velu’s formulas [34],

– Computes images {ϕA(PB), ϕA(QB)} ⊂ EA.

• Bob,

– Generates two random integers mB, nB < (lB)
eB ,

– Generates RB := mB · (PB) + nB · (QB),

– Creates an isogeny mapping ϕB : E → EB and curve EB isogenous E

using RB and Velu’s formulas,

– Computes images {ϕB(PA), ϕB(QA)} ⊂ EB.

• Alice sends to Bob EA, ϕA(PB) and ϕA(QB).

• Bob also sends to Alice EB, ϕB(PA) and ϕB(QA).

• Alice has mA, nA, ϕB(PA), and ϕB(QA). Then,

– Computes SBA := mA(ϕB(PA)) + nA(ϕB(QA)),

– Creates an isogeny mapping ψBA using SBA and Velu’s formulas,

– Creates an elliptic curve EBA isogenous to E using ψBA,

– Finally computes K := j − invariant(jBA) of the curve EBA.

• Bob also has mB, nB, ϕA(PB), and ϕA(QB). Then,

9

– Computes SAB := mB(ϕA(PB)) + nB(ϕA(QB)),

– Creates an isogeny mapping ψAB using SAB and Velu’s formulas,

– Creates an elliptic curve EAB isogenous to E using ψAB,

– Finally computes K := j − invariant(jAB) of the curve EAB.

A function of K is the secret key.

2.3.3 CSIDH(Commutative Supersingular Isogeny Diffie-Hellman)

CSIDH [18] is a cryptographic primitive that is used instead of Diffie-Hellman in

the quantum world. CSIDH is a commutative action based on supersingular elliptic

curve. Keys can be reused in CSIDH because it enables static-static key exchange.

10

CHAPTER 3

SIGNAL PROTOCOL

The Signal protocol is a cryptographic protocol used to provides end-to-end encryp-

tion in messaging applications. In the early instant messaging applications, end-to-

end encryption was not provided, only the traffic between the server and the client

was encrypted. Signal protocol is based on off-the-record messaging protocol [21].

Signal protocol has main four part:

• The X3DH Key Agreement Protocol [31]

• The XEdDSA and VXEdDSA Signature Schemes [37]

• The Double Ratchet Algorithm [38]

• The Sesame Algorithm: Session Management for Asynchronous Message En-

cryption [32]

The first part explains how to obtain a shared secret key between two parties. The

second part explains how to create and verify EdDSA (Edwards-curve Digital Sig-

nature Algorithm) compliant signatures using public and private key. The third part

explains how encrypted messages are exchanged based on a shared secret key. In fact,

applications based on the signal protocol specifically use this part. The final section

explains how to manage message encryption sessions in an asynchronous and multi-

device environment. In this thesis we focus on key exchange, message encryption

and exchange of encrypted messages.

11

3.1 Key Exchange

The X3DH protocol creates a shared secret key between the two parties, which is

mutually authenticated based on the their public keys. The protocol contains three

parties: Alice, Bob and a server. When Alice wants to send a message to Bob, Bob

might be offline but he had sent his key information to the server. Alice uses this key

information to generate a secret key and communicate with Bob.

The parameters used by this protocol are shown in Table 3.1.

Table 3.1: X3DH parameters recommended for protocols that will use the Signal

protocol

Name Definitions

curve X25519 or X448

hash A 256-bit or 512-bit hash function

info An ASCII string

For example, an application can choose X448, SHA-512, and “MyInfo” as parameters.

X3DH protocol uses some elliptic curve public keys. For example Alice sends a

message to Bob. The keys required in this case are;

• Identity keys IKA for Alice and IKB for Bob

• A signed prekey SPKB for Bob

• A set of one-time prekeys OPKB for Bob

• An ephemeral key EKA for Alice

When the protocol ends, each party has a 32-byte secret key, SK, to communicate.

X3DH has three stages:

1. Bob’s identity key and prekeys are uploaded to a server,

2. Alice receives a "prekey bundle" containing Bob’s keys from the server and

uses it to initiate the conversation.

12

3. Bob receives Alice’s first message and processes it.

Firstly, Bob sends a set of public keys which contains:

• Bob’s identity key IKB,

• Bob’s signed prekey SPKB,

• Bob’s prekey signature Sig(IKB, Encode(SPKB)),

• A set of Bob’s one-time prekeys (OPKB1 , OPKB2 , OPKB3 , ...)

to server.

Except for the identity key, Bob must again upload other keys several times. As the

one-time prekeys are updated when decreases on the server, other keys are updated

once a week or monthly.

To send a message to Bob, Alice first contact to the server and pull a prekey bundle

which contains Bob’s keys; IKB, SPKB, Sig(IKB, Encode(SPKB)), and option-

ally OPKB. After a one-time prekey is used, the server deletes the one-time prekey.

If any one-time prekey does not exist in the server the bundle is sent without a one-

time prekey.

Alice verifies the prekey signature. If verification is failed Alice annul the protocol,

otherwise generates an ephemeral key EKA and calculate:

ECDH1 = ECDH(IKA, SPKB) (3.1.1)

ECDH2 = ECDH(EKA, IKB) (3.1.2)

ECDH3 = ECDH(EKA, SPKB) (3.1.3)

ECDH4 = ECDH(EKA, OPKB) (3.1.4)

13

SK = HKDF (ECDH1||ECDH2||ECDH3||ECDH4) (3.1.5)

"ECDH" represents output of an Elliptic Curve Diffie-Hellman function, "HKDF"

represents 32 bytes of output from HMAC Key Derivation Function.

If the bundle does not have a OPKB then ECDH4 is not calculated.

Alice deletes her ephemeral key and ECDH outputs after SK is calculated.

Lastly, Alice computes an associated data byte sequence AD that includes identity

information for Alice and Bob:

AD = Encode(IKA)||Encode(IKB) (3.1.6)

For calculation of AD, parties’ certificates, usernames, or other identifying informa-

tion can be used unlike identity keys.

After all the computation, Alice sends the first message to Bob. It contains;

• Alice’s identity key IKA,

• Alice’s ephemeral key EKA,

• Identifiers stating which of Bob’s prekeys Alice used

• An initial ciphertext is encrypted with some AEAD using AD and using an en-

cryption key which is either SK or the output from some cryptographic pseudo

random function keyed by SK.

After the first message is sent, communication can continue through the SK or keys

derived from SK.

After Bob receives the first message, Bob gets IKA and EKA with the message.

Using his own private keys corresponding prekeys which Alice used, derive SK by

repeating ECDH and HKDF algorithms. Bob also computes AD as reported and tries

to decrypt Alice’s initial message. If decryption is failed, Bob annul protocol. If the

14

initial message is decrypted successfully then Bob deletes any one-time prekey which

was used. This deletion provides forward secrecy.

3.1.1 Double Ratchet

The double ratchet algorithm is used to encrypt messages and send and receive these

encrypted messages. Actually, double ratchet can be considered post-X3DH. Because

the outputs of X3DH become inputs of the double ratchet.

• The SK becomes the input to initiate the double ratchet.

• The AD is used in double ratchet encryption and decryption as input.

• The SPKB becomes Bob’s first ratchet key pair to initiate double ratchet.

In every double ratchet, new keys are derived thus and so earlier keys can not be

computed using later keys. Also, in every double ratchet, parties send Diffie-Hellman

public keys. Parties use the result of Diffie-Hellman to derive new keys so that later

keys can not be computed using earlier keys.

The double ratchet has mainly two parts: symmetric-key ratchet and Diffie-Hellman

ratchet. Symmetric-key ratchet is used to obtain the message key when a message is

sent or received. Diffie-Hellman ratchet is used to obtain new chain keys when a new

ratchet public key is received. The core concept of these two parts is Key Derivation

Function, KDF.

KDF is a cryptographic function which takes a secret and random KDF key and some

input data then gives an output data. The term KDF chain is used when some part of

output of a KDF is used as output key and the rest part of the output is used as KDF

key with another input data for another KDF. Figure 3.1 shows a KDF chain.

15

Figure 3.1: KDF Chain [38]

A KDF chain has resilience, forward security and break-in recovery [38].

• Resilience: Whether or not the third party knows about KDF keys, they see the

output key as random.

• Forward security: The third party who learns the KDF key at any time sees the

output keys from the past as random.

• Break-in recovery: The third party who learns the KDF key at any time will see

the future output keys as random, provided that the future inputs have added

enough entropy.

Symmetric-key Ratchet: A message key is required to encrypt each message. KDF

chains’ outputs are called message key, MK, and chain key, CK, which are the KDF

keys for these chains. In symmetric-key ratchet KDF takes constant data as input

16

data. These chains ensure that each message is encrypted with a unique key. After

encryption, these keys can be deleted. The calculation of the next chain key and

the message key is done in a single ratchet step as shown in the Figure 3.2. In the

symmetric-key ratchet step HMAC is used to get the next 32-byte CK and 32-byte

MK.

Figure 3.2: Single Ratchet [38]

The Signal protocol recommends to use HMACSHA-256 or HMACSHA-512 withCK

as the HMAC key. If calculating the message key MK it takes 0x01 as constant, if

calculating the chain key CK it takes 0x02 as constant.

If the chain key is stolen then all future message keys can be computed. There-

fore symmetric-key ratchet and Diffie-Hellman ratchet are combined in the Double

Ratchet algorithm.

Diffie-Hellman Ratchet: Diffie-Hellman ratchet obtains new chain keys using Diffie-

Hellman outputs. In each ratchet so that, in case the chain key is stolen, the attacker

can not calculate future message keys.

In the Diffie-Hellman ratchet algorithm, each party generates a ratchet key pair which

is a Diffie-Hellman key pair in every ratchet. Every message has the sender’s current

ratchet public key in the header part. When Alice sends a new ratchet public key to

Bob, a Diffie-Hellman ratchet step is applied and the current key pair is updated with

a new one.

In this ratchet, one party initializes the ratchet with the other party’s public key. For

17

example, as shown in Figure 3.3, Alice takes Bob’s ratchet public key, then calculates

Diffie-Hellman outputs with her ratchet private key.

Figure 3.3: Diffie-Hellman Key Exchange I [38]

In Figure 3.4, Bob takes Alice’s message, which contains Alice’s ratchet public key

in the header part, he performs Diffie-Hellman step with his ratchet private key and

Alice’s ratchet public key and gets the same Diffie-Hellman output as Alice gets.

After that Bob generates a new ratchet key pair and calculates a new Diffie-Hellman

output to send a message.

Figure 3.4: Diffie-Hellman Key Exchange II [38]

After Alice takes Bob’s message, in Figure 3.5, she computes two Diffie-Hellman

outputs like Bob. One of the outputs is exactly the same output with Bob’s latest

output and the other one is a new ratchet key pair. This process continues like ping-

18

pong behavior.

Figure 3.5: Diffie-Hellman Key Exchange III [38]

All computed Diffie-Hellman outputs are used to generate sending and receiving

chain keys. The sending key of Alice is the same as the receiving key of Bob as

shown in Figure 3.6.

Figure 3.6: Sending and Receiving Chain Keys [38]

The above diagram is roughly. The sending and receiving keys are not taken as the

same Diffie-Hellman outputs. After compute Diffie-Hellman output, this value is

19

used as input data in a KDF with root key RK shown in Figure 3.7. The first 32-byte

of KDF output is used as the root key for the next KDF and the rest 32-byte of KDF

output is used as a sending or receiving chain key. In Diffie Hellman Ratchet, HKDF

is used to produce the next root key RK and the sendinlg/receiving chain key CK.

Figure 3.7: Diffie-Hellman Ratchet [38]

The Signal protocol recommends using HKDF-SHA256 or HKDF-SHA512 with in-

puts the root key RK, the output of Diffie-Hellman and info value.

Double ratchet is a combination of symmetric-key ratchet and Diffie-Hellman ratchet.

In Figure 3.8, Alice computes Diffie-Hellman output with her ratchet private key and

Bob’s ratchet public key and also generates her new ratchet key pair in the first ratchet.

Then this Diffie-Hellman output is used as input data in a KDF with a secret root key

so Alice obtains a new RK, and sending CK.

20

Figure 3.8: Old Keys Deletion [38]

After the next RK and CK, a symmetric-key ratchet is applied to the CK to send

message A1, the message key A1 (will be labeled with the message) is produced in

Figure 3.9. After the message A1 is sent, keeping the new chain key while deleting

the old chain key and the message key.

Figure 3.9: Symmetric Key Ratchet [38]

Until Alice takes response from Bob it continues. After Alice takes the message B1

from Bob, Alice again applies Diffie-Hellman ratchet because of taking a new ratchet

public key from Bob (Bob’s public keys are showed as the message name) and also

again applies a symmetric-key ratchet to produce the next MK as shown in Figure

3.10.

21

Figure 3.10: Key computation for the next message [38]

3.2 Encryption

In the Signal protocol, AEAD encryption scheme based on either SIV (Synthetic

Initialization Vector) or a composition of CBC (Cipher Block Chaining) with HMAC

is recommended. Below is a recommended encryption example based on CBC mode

with HMAC:

1. To produce 80 bytes output use HKDF-SHA256. The inputs are the salt of

HKDF is zero with length is hash’s output length, the key is the message key

MK, and info.

2. The first 32-byte of output of HKDF is encryption key, the second 32-byte is

authentication key and last 16-byte is IV .

3. The message is encrypted with AES256 in CBC mode with PKCS#7 (Public-

Key Cryptography Standards) padding.

4. Lastly, the output of HMAC-SHA256 which is calculated with authentication

key and AD, is appended to the ciphertext.

22

CHAPTER 4

SIGNAL AND SIGNAL BASED PROTOCOLS

4.1 SIGNAL

Signal protocol documentation provides an overview for those who will use the Signal

protocol in their applications. However, it did not give any information about which

parameters or which algorithms it used. Therefore, information similar to these has

been obtained from Signal’s source code.

4.1.1 Key Exchange

The parameters used by Signal protocol in X3DH are shown in Table 4.1.

Table 4.1: X3DH parameters for Signal protocol

Name Definitions

curve CurveX25519

hash SHA256

info "WhisperText"

Firstly, SK is computed in the function initializeSession;

SK = HKDF (ECDH(IKA, SPKB)||ECDH(EKA, IKB)||

ECDH(EKA, SPKB)||ECDH(EKA, OPKB))
(4.1.1)

The Figure 4.1 is taken from source code of Signal and shows initializeSession func-

tion.

23

Figure 4.1: Computation of shared secret key

Then the function, is called calculateDerivedKeys shown in Figure 4.2, takes SK and

related parameters and gives the first root and chain keys;

RK0||CK0,0 = HKDF (SK, "WhisperText", 64) (4.1.2)

Figure 4.2: Computation of the first root key and chain key

24

4.1.1.1 Double Ratchet

After computing the first root key and chain key, in each ratchet, the function creat-

eChain computes the new root keys and chain keys with info “WhisperRatchet” as

shown in Figure 4.3.

RKi||CKi,0 = HKDF (ECDHout, RKi−1, "WhisperRatchet", 64) (4.1.3)

Figure 4.3: Computation of the next root key and chain key

Then the function ChainKey shown in Figurr 4.4, takes CK and computes the new

chain key with constant 0x02 and message key with constant 0x01.

CK = HMAC(CK, 0x02) (4.1.4)

MK = HMAC(CK, 0x01) (4.1.5)

25

Figure 4.4: Computation of the next chain key and the message key

4.1.2 Encryption

As seen in the code block above, message key which is computed goes to deriveS-

ecrets function with the info “WhisperMessageKey” as shown in Figure 4.4, then

returns a byte array which has length 80 byte.

The first 32 byte of the array is mentioned as CipherKey in the source code is

AES_KEY to use in AES, the second 32 byte is mentioned MacKey in the source

code is HMAC_KEY to use in HMAC and the last 16 byte is mentioned Iv is

AES_IV to use in AES.

26

AES_KEYi,j||HMAC_KEYi,j||AES_IVi,j

= HKDF (0,MKi,j,“WhisperMessageKey", 80)
(4.1.6)

The DerivedMessageSecrets funcion in Figure 4.5 does this calculation.

Figure 4.5: Computation of AES_KEY , HMAC_KEY and IV

After all the keys are computed, encrypt function, shown in Figure 4.6, takes padded

message and encrypts it.

27

Figure 4.6: Encryption and authentication

In the encrypt function, there are two function; getCiphertext and SignalMessage.

getCiphertext function takes the padded plaintext and AES_KEY then obtain ci-

phertext, SignalMessage gets AD and computes HMAC of concatenated ciphertext

and AD.

When look at the function getCiphertext in Figure 4.7, it calls getCipher function.

28

Figure 4.7: Encryption of plaintext

getCipher function shows that Signal use AES256 in CBC mode with PKCS#5

padding as shown in Figure 4.8.

Figure 4.8: AES in CBC mode with PKCS#5 padding

When look at the SignalMessage function shown in Figure 4.9, it takes parameters

then return concatenated version, ciphertext and the HMAC of concatenated cipher-

text and AD.

Figure 4.9: Computation of AD and concatenation of ciphertext and HMAC output

29

HMAC is computed with function getMac as shown in Figure 4.10. getMac function

takes IKA, IKB, HMAC_KEY . First calculates AD.

AD = Encode(IKA)||Encode(IKB) (4.1.7)

Then computes HMAC of concatenated the ciphertext and AD and gives the first 8

byte of HMAC output.

Figure 4.10: Computation of associated data

Finally, the ciphertext and the first 8-byte of HMAC output are concatenated, then is

sent to recipient.

4.2 LINPHONE

Linephone is a SIP based and an open source softphone for instant messaging. It uses

Linphone Instant Message Encryption v2.0(LIME) Protocol [36].

LIME Protocol is a Signal based protocol with different parameters. Lime provides

multiple devices per user and multiple users per device. Therefore LIME uses two

different encryption mechanisms, one of them is optional. The first and main one is

directly using Double Ratchet, the second and optional one is to encrypt the message

with a random key and then encrypt the random key with Double Ratchet.

30

4.2.1 Key Exchange

LIME, different from Signal X3DH Protocol, generates, stores and transmits Identity

Key in its EdDSA format and converts into X25519 or X448 format when an ECDH

calculation is performed on it. All the other keys are stored in ECDH format.

Another discrepancy between LIME and Signal X3DH Protocol is HKDF. LIME uses

HKDF which is based on SHA512. The size of output of HKDF is permissive and

not subject to input or hash algorithm.

The parameters used by this protocol are shown in Table 4.2;

Table 4.2: X3DH parameters for LIME Protocol

Name Definitions

curve X25519 or X448

hash SHA-512

info "Lime"

To compute the shared secret key SK Lime Protocol uses X3DH protocol in the Signal

Protocol with info “Lime” and salt is zero filled buffer in length of output of hash.

SK = HKDF (ZeroBuffer, F,ECDH1||ECDH2||ECDH3||ECDH4,Lime)

(4.2.1)

In this equation F is a 0xFF filled buffer of length 32-byte or 57-byte depending on

the curve25519 or curve448 respectively.

Lime also computes associated data AD using HKDF-SHA512. Firstly calculate

ADinput with identity key IK and deviceID is a unique string associated to a device,

provided to Lime by Linphone.

ADinput = IKB||IKA||DeviceIdA||DeviceIdB (4.2.2)

Then using HKDF-SHA512 with salt as zero filled buffer in length of output of hash,

31

ADinput and info “X3DH Associated Data”, AD is computed.

AD = HKDF (ZeroBuffer, ADinput, "X3DH Associated Data") (4.2.3)

4.2.1.1 Double Ratchet

To calculate the first RK and the first CK, HKDF-SHA512 is used with the shared

secret key SK,info “DR Root Chain Key Derivation”.

RK0||CK0,0 = HKDF (SK,ECDHout, "DR Root Chain Key Derivation")

(4.2.4)

After computation of the first RK and CK, in each double ratchet step compute the

next RK and CK using the previous RK, the output of ECDH and the info “DR

Root Chain Key Derivation”. The length of ECDH changes depend on curves. If

curve25519 is used, the length of output of ECDH is 32 bytes, if curve448 is used

then the length of output of ECDH is 36 bytes.

RKi||CKi,0 = HKDF (RKi−1, ECDHout, "DR Root Chain Key Derivation")

(4.2.5)

To calculate the next CK and the message key MK, HMAC-SHA512 is used. The

output length of the HMAC to generate MK is 48 byte, 32 bytes of 48 bytes is MK

and the rest 16 bytes is AEAD nonce IV . If HMAC-SHA512 generates MK, it takes

the previous CK and info 0x01, if generates the next CK it takes the previous CK

and info 0x01.

CK = HMAC(CK, 0x02) (4.2.6)

MK||IV = HMAC(CK, 0x01) (4.2.7)

32

4.2.2 Encryption

Lime protocol, as presented above, uses two encryption mechanisms which one of

them is optional.

The first one is that encrypt the message directly in the Double Ratchet. Figure 4.11

shows the encryption scheme.

Figure 4.11: Double Ratchet Message encryption policy

For encryption, an AEAD encryption scheme based on SIV is used as recommended

in Signal Protocol. It uses AES256 in GCM (Galois/Counter Mode) mode. This

algorithm is considered reliable as old keys are deleted.

For encryption;

• Function takes MK, IV , plaintext and AD as inputs, then using AES-256 in

GCM mode encrypts the plaintext.

• Also computesAD, usingAD by computed X3DH Protocol. Let sayX3DH−
AD instead of the first AD.

AD = RecipientUserId||SourcedeviceId||RecipientdeviceId

||X3DH − AD < 32bytes > ||DRHeader
(4.2.8)

• Finally concatenate the ciphertext and the HMAC output of concatenated ci-

phertext and AD||X3DH − AD||header as AD, then it is sent to recipient.

33

The second one is that encrypt the message with a random key and then encrypt the

random key in Double Ratchet shown in Figure 4.12. In Figure 4.12, "Bob DR msg"

shows concatenated encrypted message and HMAC output, cipherMessage shows

concatenated encrypted random seed and HMAC output.

Figure 4.12: Cipher Message encryption policy

For encryption;

• First of all generate a 32-byte random seed.

• HKDF-SHA512 takes this random seed and “DR Message Key Derivation” as

info then produces 32-byte encryption key AES_KEY and 16 bytes IV .

AES_KEY ||IV = HKDF (randomseed,“DR Message Key Derivation”)

(4.2.9)

• The message is encrypted using AES256 in GCM mode with the AES_KEY

and corresponding IV .

• Calculate HMAC of concatenated ciphertext and sourceDeviceId||recipientUserId
as AD, then the output is concatenated to the ciphertext.

• Also the random seed is encrypted using AES256 in GCM mode with the MK

and corresponding IV .

34

• Compute AD,

AD =MessageTag < 16bytes > ||SourcedeviceId||RecipientdeviceId||

X3DH − AD < 32bytes > ||DRHeader

(4.2.10)

• Calculate HMAC of concatenated ciphertext and AD, then the output is con-

catenated to the ciphertext of encryption random seed.

• Lastly, Bob DR Msg and cipherMessage are concatenated then it is sent to the

recipient.

4.3 XABBER

Xabber is an open source XMPP client for Android system and Web. It uses OMEMO

Protocol [40], which is an extension of XMPP, to encrypt communication between

two clients.

In XMPP, there are two main end-to-end encryption schemes; Open PGP and Off-

the-record Messaging. However, these schemes have some problems. For instance;

OTR does not supply asynchronous messaging while Open PGP does not provide

forward secrecy. For these reasons, OMEMO was obtained by developing the Double

ratchet with X3DH key agreement protocol. The following section gives technical

information about the protocol.

4.3.1 Key Exchange

OMEMO Protocol uses modified X3DH protocol to key agreement part. The param-

eters used by this protocol are shown in Table 4.3.

35

Table 4.3: X3DH parameters for OMEMO Protocol

Name Definitions

curve X25519 or X448

hash SHA-256

info "OMEMO X3DH"

OMEMO uses exactly the same X3DH key agreement protocol as presented above

with its parameters.

SK = HKDF (ECDH1||ECDH2||ECDH3||ECDH4) (4.3.1)

Alice also compute AD = Encode(IKA)||Encode(IKB) as associated data.

4.3.1.1 Double Ratchet

OMEMO Protocol uses HKDF-SHA256 to calculate root keys. After computing the

SK, it goes HKDF as input with info "OMEMO X3DH", then the first RK and the

first CK is obtained.

RK0||CK0,0 = HKDF (SK, "OMEMO X3DH", 64) (4.3.2)

After computing the first root key, it takes the previous root key RK, ECDHout as

the output of ECDH and “OMEMO Root Chain” as info as inputs in each double

ratchet.

RKi||CKi,0 = HKDF (RKi−1, ECDHout, "OMEMO Root Chain", 64) (4.3.3)

Then compute the next CK and MK using HMAC-SHA256. To obtain MK it takes

the previous CK and constant 0x01.

36

MK = HMAC(CK, 0x01) (4.3.4)

To obtain the next CK it takes the previous CK and constant 0x02.

CK = HMAC(CK, 0x02) (4.3.5)

4.3.2 Encryption

For encryption, OMEMO protocol uses AES256 in CBC mode with HMAC-SHA256.

However there is a difference between OMEMO protocol and Signal protocol. While,

in the Signal protocol, message is taken as plaintext on the other hand, in OMEMO

protocol, the message is encrypted then 32-byte encryption key and 32-byte HMAC

key are taken as plaintext.

To encrypt the message OMEMO protocol usesAES256 in CBC mode and HMAC-

SHA256.

• Generate a random encryption key RK which is crytographically secure ran-

dom data [1].

• HKDF-SHA256 takes this encryption key as input, 256 zero-bits and HKDF

info “OMEMO Payload” then gives output which has length 80-bytes.

• The first 32-byte of HKDF output is AES_KEY , the second 32-byte is

HMAC_KEY and the last 16 byte is IV .

AES_KEY ||HMAC_KEY ||AES_IV

= HKDF (0, RK, “OLM Payload", 80)
(4.3.6)

• Using AES256 in CBC mode with padding PKCS#7 and AES_KEY and IV ,

the message is encrypted.

• Calculate HMAC-SHA256 takes ciphertext and HMAC_KEY as input and

then the first 16-byte of output is concatenated to the ciphertext.

37

After encryption of the message, the concatenated encryption key and HMAC key is

encrypted using double ratchet. OMEMO uses AES256 in CBC mode and HMAC-

SHA256 in the Double Ratchet.

• After generation of MK it goes to HKDF with other inputs 256 zero-bit as salt

and “OMEMO Message Key Material” as info and it gives output which has

length 80-bytes.

• The first 32-byte of the output is AES_KEY , the second 32-byte is

HMAC_KEY and last 16-byte is IV .

AES_KEYi,j||HMAC_KEYi,j||AES_IVi,j

= HKDF (0,MKi,j,“OLM Message Key Material", 80)
(4.3.7)

• Then using AES256 in CBC mode with PKCS#7 padding, the concatenated

encryption key and HMAC key which are used to encrypt the message are en-

crypted with the computed keys and IV in the equation 4.3.7.

• The output and AD are concatenated then become input for HMAC.

• HMAC-SHA256 is computed with inputs, is taken the first 16-bytes and is

appended to the output of AES and it is sent to recipient.

4.4 WIRE

Wire is an instant messaging application. It uses Proteus protocol [5] to encrypt

text. Proteus protocol is a Signal based protocol with different parameters. Proteus

protocol is open source and does not have a documentation. Therefore, source code

has been analyzed.

4.4.1 Key Exchange

Proteus Protocol uses X3DH protocol with the parameters shown in Table 4.4.

38

Table 4.4: X3DH parameters for Proteus protocol

Name Definitions

curve CurveX25519

hash SHA-256

info "handshake"

Firstly, the shared secret key which is named as master_key is computed using ECDH

with curve25519 and inputs IK_A, IK_B, SPK_B and EK_A in function Ses-

sionState as shown in Figure 4.13.

Figure 4.13: Computation of shared secret key

Afterwards, DerivedSecrets function, shown in Figure 4.14, takes master_key and

info “handshake” and gives the first RK and the first CK.

RK0||CK0,0 = HKDF (SK, "handshake", 64) (4.4.1)

Figure 4.14: Computation of the first root and chain key

39

4.4.1.1 Double Ratchet

In the double ratchet procedure, in each ratchet, the new RK and the new CK

are derived. To get the new RK, DerivedSecret function is called again with info

“dh_ratchet” as shown in Figure 4.15.

RKi||CKi,0 = HKDF (RKi−1, "dh_ratchet", 64) (4.4.2)

Figure 4.15: Computation of the next root and chain key

After obtaining RK and CK, CK, which is mentioned as MacKey in Figure 4.16,

goes to function next then the new chain key is obtained with constant 0x01.

CK = HMAC(CK, 0x02) (4.4.3)

MK = HMAC(CK, 0x00) (4.4.4)

Then CK goes to function DerivedSecrets with info “hash_ratchet” and constant

0x00 then message key is obtained as shown in Figure 4.16.

40

Figure 4.16: Computation of the next chain key and the message key

4.4.2 Encryption

Proteus protocol uses Chacha20 stream cipher for encryption. The first 32 byte of

message key is cipher_key to use in encryption, the second 32 byte is mac_key to use

in HMAC and the last 8 byte is the nonce value to use in encryption.

The encrypt function takes cipher_key as encryption key and plain text as shown in

Figure 4.17.

Figure 4.17: Encryption I

In this function also another encrypt function from structure CipherKey is called. The

Figure 4.18 shows that the function takes plaintext, cipher_key and nonce value and

gives the ciphertext.

41

Figure 4.18: Encryption II

4.5 ELEMENT (RIOT.IM)

Riot is an open source messaging application. It uses Matrix protocol for encryption.

Matrix has two libraries to encrypt messages; Megolm library and Olm library [4].

Actually, Megolm library is an expansion of Olm library for rooms. Olm library is

used for encryption in one-to-one communications.

4.5.1 Key Exchange

Olm library uses modified X3DH protocol to key agreement part with these parame-

ters shown in Table 4.5.

Table 4.5: X3DH parameters for Olm Protocol

Name Definitions

curve X25519

hash SHA-256

info "OLM_ROOT"

It takes identity keys, IKA and IKB, and ephemeral keys, EA and EB, which are

42

generated by using curve25519 then using X3DH protocol generates secret shared

key SK. Different from the Signal Protocol, in Olm Protocol X3DH takes Bob’s

ephemeral key instead of Bob’s signed prekey and there is no one time prekey in

Bob’s keys bundle.

SK = ECDH(IKA, EB)||ECDH(EA, IKB)||ECDH(EA, EB) (4.5.1)

After compute the SK, it uses this key to compute the first RK.

4.5.1.1 Double Ratchet

As in the Signal Protocol, Matrix Protocol uses SK to generate the first RK and CK

with info “OLM_ROOT".

RK0||CK0,0 = HKDF (0, SK, "OLM_ROOT", 64) (4.5.2)

After the first RK and CK generation, in each double ratchet step, HKDF-SHA256

will be applied again. It takes the previous RK, the result of ECDH where one of the

inputs is the public key of one side and the other input is the private key of the other

side and info “OLM_RATCHET” to get the next RK.

Ri||Ci,0 = HKDF (Ri−1, ECDHout, "OLM_RATCHET", 64) (4.5.3)

HMAC-SHA256 will be applied to obtain the next CK with inputs the previous CK

and constant 0x02.

Ci,j = HMAC(Ci,j−1, 0x02) (4.5.4)

To generate message key MK, HMAC-SHA256 will be applied with inputs current

CK and constant 0x01.

Mi,j = HMAC(Ci,j, 0x01) (4.5.5)

43

4.5.2 Encryption

After computation of the message key, using HKDF-SHA256 with input message key

MK and info “OLM_KEYS”, 256 bit AES_KEY , 256 bit HMAC_KEY and 128

bit AES_IV are computed.

AES_KEYi,j||HMAC_KEYi,j||AES_IVi,j

= HKDF (0,MKi,j, "OLM_KEYS", 80)
(4.5.6)

Afterward, using AES-256 in CBC mode with padding PKCS#7 with inputs which

are the plaintext, the key AES_KEYi,j and AES_IVi,j , the ciphertext Xi,j is ob-

tained.

Additionally HMAC-SHA256 is used for authentication. The complete message is

sent to HMAC-SHA256 and the first 8 bytes of output are appended to the message

and it is sent to recipient.

44

CHAPTER 5

POST-QUANTUM ALGORITHMS FOR SIGNAL AND SIGNAL BASED

ALGORITHMS

Throughout the thesis, we explained the key exchange and encryption algorithms of

the Signal Protocol and four different protocols developed based on the Signal Pro-

tocol. While public key algorithms are used for key exchange, symmetric algorithms

are used for encryption. With today’s technology, there is no algorithm that can effi-

ciently break public key algorithms. In 1997, however, Shor’s algorithm [39] showed

that integer factorization problem and discrete logarithm problem can be broken with

quantum computers in polynomial time. Therefore, post-quantum algorithms should

replace classical public key algorithms. Symmetric key algorithms, on the other hand,

can be made post-quantum resistant by strengthening their parameters. Therefore,

first of all, it should be focused on the public-key algorithms used in the Signal Pro-

tocol.

In their study published in 2020, Alwen et al. [12] offered the answer to the question

of how to make the Double Ratchet mechanism quantum-proof, assuming a quantum-

proof key exchange is done. This study, in which KEM algorithms are used, is the

first study for Double Ratchet. Since the public key algorithms in Double Ratchet

have become quantum resistant with this work, only the public key algorithms in the

X3DH protocol are included in this section.

In this section, we will focus on which post-quantum algorithm can be substituted

for the key exchange algorithm in X3DH. All protocols presented in Chapter 4 uses

the same key exchange algorithm with different parameters, therefore, the algorithms

presented below are offered as suggestions for all protocols.

45

Today, many studies are carried out on post-quantum. For example, the 4th round has

been reached in the work carried out by NIST to standardize post quantum algorithms

[3]. As stated in the Status Report on the Third Round of the NIST Post-Quantum

Cryptography Standardization Process [9], the first standardized algorithm is CRYS-

TALS–KYBER [14]. Also in round 4, BIKE, Classic McEliece, HQC, and SIKE will

be considered for standardization. It is considered that these studies will also benefit

to the Signal Protocol. As a matter of fact, Wire application has started post quantum

studies by applying the NewHope [10] algorithm, one of the NIST tour 2 candidates,

to its protocol.

Some work is being done to make the Signal Protocol resistant to quantum. It is pos-

sible to collect the examined studies under three headings; Key exchange protocols

based on SIDH1, CSIDH or KEM. In this section, we will review the early studies on

SIDH, CSIDH, and KEM and compare these concepts and decide which one is more

useful for the Signal Protocol.

The first study, The Post-Quantum Signal Protocol: Secure Chat in a Quantum World

[23], was published in 2019. In this study, Duits et al. implement 10 different KEMs

and 45 different version of these KEMs to key exchange in the Double Ratchet and

SIDH to key exchange in the X3DH. They also evaluate them in terms of CPU us-

age, storage space, bandwidth and energy efficiency.Although ECDH is used on both

Double Ratchet and X3DH, SIDH is preferred over KEM on X3DH as KEM does not

enable key reuse. KEM algorithms used in the study are Big Quake, Frodo, BIKE,

Leda, Crystal-Kyber, New Hope, Lima, SIKE, Saber, and Titanium, SIDH algorithms

used are SIDH503 and SIDH751. However, because of Alwen et al.’s study [12] Dou-

ble Ratchet is out of the scope. Key sizes used by SIDH are shown in Table 5.1.

1 Castryck and Decru announced that they broke SIDH in their study published in July 2022[17]. However,
due to the publication of the relevant article shortly before the publication of our study, we did not change this
part of our study, but we would like to point out that SDIH is not suitable for post-quantum use.

46

Table 5.1: Key sizes in Curve25519, SIDH503 and SIDH751 [23]

Curve25519 SIDH503 SIDH751

Public Key 32 378 564

Private Key 32 32 48

Security Level 0 1 3

After all evaluations they decide to use both kyber512 and SIDH512 algorithms. Be-

cause in this situation per message delay only 0.02 seconds. However, to implement

KEM to Signal protocol there are some changes in the protocol. On the other hand, to

implement SIDH is more easy and in that situation delay is 0.03 seconds per message.

In another study conducted in 2019, Alvila et al. apply CSIDH to Signal and com-

pare it with the original Signal and evaluate the results in A Performance Evaluation

of Post-Quantum Cryptography in the Signal Protocol [11]. Alvila et al. choose

CSIDH because all PQCRYPT and NIST’s algorithms use key encapsulation mech-

anism. These algorithms, because they are KEM, cannot be used as static-static key

exchange like ECDH in Signal however CSIDH is provided as a post-quantum al-

gorithm. In addition to this, it is necessary to make changes to the Signal Protocol

to implement KEM. In the study, thread times in milliseconds were compared when

sending the first message, sending consecutive messages, and replying to the incom-

ing message using Curve25519, CSIDH-512 and CSIDH-1024. The speed of CSIDH

is practical. It is also stated in the article that the key lengths of CSIDH are short as

shown in Table 5.2.

Table 5.2: Key sizes in Curve25519, CSIDH-512 and CSIDH-1024 [11]

Curve25519 CSIDH-512 CSIDH-1024

Public Key 32 64 128

Private Key 32 32 64

Security Level 0 1 3

In 2020, Brendel et al. published Towards Post-Quantum Security for Signal’s X3DH

Handshake [16]. They say that SIDH and CSIDH satisfies key reuse but SIDH can be

47

attacked when keys are reused, while parameter selection of CSIDH is doubtful and

it has high cost. Therefore they came up with a new notions; split Key Encapsulation

Mechanism or split KEM. Split KEM is actually a KEM that allows both parties to

contribute to the encapsulation with either a one-time key or a static key. Key gener-

ation which is on the encapsulator side is separated from the encapsulation algorithm

in split KEM. This enables key reuse as in the Diffie-Hellman algorithm. As seen in

Figure 5.1, required for key sharing containing Alice’s identity key, the last stream

which is red, breaks X3DH’s asynchronicity.

Figure 5.1: Signal’s X3DH key exchange with KEMs replacing the Diffie-Hellman

operations. The optional ephemeral prekey (combination) shown in blue[16].

In split KEM, as seen in Figure 5.2, both Alice and Bob can reuse their key pairs and

contribute encapsulation. Further, split KEM ensures asynchronicity as there is no

additional message flow from Bob to Alice. The NIST submitted KEMs which are

passively-secure, particularly lattice-based, could be used as the split KEM format

because the encapsulation mechanisms can be divided into a key generation and a

shared key computing part.

48

Figure 5.2: Signal’s X3DH key exchange with split KEMs replacing the Diffie-

Hellman operations. The optional ephemeral prekey (combination) shown in blue

[16].

It has been previously stated that Diffie-Hellman security properties cannot be

achieved using KEM alone, two studies conducted in 2021 are also on this. The

first one is An Efficient and Generic Construction for Signal’s Handshake (X3DH):

Post-Quantum, State Leakage Secure, and Deniable [26] and the second one is Post-

quantum Asynchronous Deniable Key Exchange and the Signal Handshake [15].

While Hashimato et al. use KEM and signature scheme in [26], Brendel et al. use

KEM and Designated Verifier Signature (DVS) in [15]. The signature algorithms are

out of our scope. But we can say that both studies provided Diffie-Hellman security

features such as asynchronicity, deniability, forward secrecy and authenticity.

Table 5.3 shows the comparison of the studies reviewed in terms of Diffie-Hellman

safety features.

49

Table 5.3: Comparison of studies in terms of Diffie-Hellman security properties

Asynchronicity Deniability Forward secrecy Authenticity

CSIDH ✓ ✓ ✓(weak) ✓

SIDH ✓ ✓ ✓

Split KEM ✓ ✓

KEM and

Signature

✓ ✓ ✓ ✓

KEM and

DVS

✓ ✓ ✓ ✓

As a result, each study to make the Signal Protocol resistant to quantum has its own

advantages and disadvantages. Moreover the study which is published in July 2022

described breaking of SIDH[17]. Although it is easy to apply to the SIDH and CSIDH

Signal Protocol and various changes are needed in the protocol to implement KEM,

KEM is the area that needs work in our opinion. Because it provides all the security

features of Diffie-Hellman, asynchronicity, deniability, forward secrecy and authen-

ticity, by being supported by signatures, and since all of the NIST Post Quantum

Cryptography Standardization process candidates are KEM, it will be standardized in

the near future.

50

CHAPTER 6

CONCLUSION

In this thesis, firstly, we give a cryptographic background. Cryptographic primitives,

used key exchange algorithms and used encryption algorithms are describe shortly.

After that, the Signal Protocol which is the main protocol of the thesis is explained

and give general perspective for choosing parameters.

Next, we presented Signal based and open source instant messaging applications;

Linphone, Xabber, Wire and Element. We touched on which algorithms they use for

key exchange and encryption in one-to-one communication, what the inputs of these

algorithms are, and how the AD they use for authentication is obtained. We also

documented the information that is not included in the documentation of Wire and

Signal applications by examining the source codes.

Finally, we examined the post-quantum algorithms that can replace ECDH in the key

exchange protocol of the Signal Protocol, discussed their advantages and disadvan-

tages, and tried to decide on the most useful one for the Signal Protocol.

For the future works; those who want to develop applications using the Signal Pro-

tocol can look at how other applications implement the Signal Protocol in the light

of this thesis. For example, the Wire application used a different encryption algo-

rithm than the algorithms suggested by Signal. By making changes like this, new

end-to-end encrypted instant messaging applications can be developed. Furhermore,

post-quantum is a very new and developing field. As described in this thesis, none

of the post-quantum algorithms presented is perfect for the Signal Protocol. An al-

gorithm that can be easily implemented to Signal and can provide all the security

properties of Diffie-Hellman such as asynchronicity, deniability can be developed.

51

52

REFERENCES

[1] Crytographically secure random data. https://datatracker.ietf.

org/doc/html/rfc4086, accessed: 2022-08-20.

[2] Facebook messenger. https://www.messenger.com/, accessed: 2022-

08-20.

[3] Nist post-quantum standardization protocol. https://csrc.

nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization, accessed:

2022-08-20.

[4] Olm protocol. https://gitlab.matrix.org/matrix-org/olm/

-/blob/master/docs/olm.md, accessed: 2022-08-20.

[5] Proteus protocol. https://github.com/wireapp/proteus, ac-

cessed: 2022-08-20.

[6] Secure messaging scorecard. which apps and tools actually keep your messages

safe? https://www.eff.org/node/101713/, accessed: 2022-08-20.

[7] Skype. https://www.skype.com/, accessed: 2022-08-20.

[8] Whatsapp. https://whatsapp.com, accessed: 2022-08-20.

[9] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger,

C. Miller, D. Moody, R. Peralta, et al. Status report on the third round of the nist

post-quantum cryptography standardization process. Technical report, National

Institute of Standards and Technology Gaithersburg, MD, 2022.

[10] E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. De La Piedra, P. S. T. Pöppelmann,

and D. Stebila. Newhope. Submission to the NIST Post-Quantum Cryptography

standardization project, Round, 2, 2019.

53

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086
https://www.messenger.com/
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://github.com/wireapp/proteus
https://www.eff.org/node/101713/
https://www.skype.com/
https://whatsapp.com

[11] M. Alvila. A performance evaluation of post-quantum cryptography in the sig-

nal protocol, 2019.

[12] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: security notions, proofs,

and modularization for the signal protocol. In Annual International Conference

on the Theory and Applications of Cryptographic Techniques, pages 129–158.

Springer, 2019.

[13] D. J. Bernstein et al. Chacha, a variant of salsa20. In Workshop record of SASC,

volume 8, pages 3–5, 2008.

[14] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,

P. Schwabe, G. Seiler, and D. Stehlé. Crystals-kyber: a cca-secure module-

lattice-based kem. In 2018 IEEE European Symposium on Security and Privacy

(EuroS&P), pages 353–367. IEEE, 2018.

[15] J. Brendel, R. Fiedler, F. Günther, C. Janson, and D. Stebila. Post-quantum

asynchronous deniable key exchange and the signal handshake. In IACR Inter-

national Conference on Public-Key Cryptography, pages 3–34. Springer, 2022.

[16] J. Brendel, M. Fischlin, F. Günther, C. Janson, and D. Stebila. Towards post-

quantum security for signal’s x3dh handshake. In International Conference on

Selected Areas in Cryptography, pages 404–430. Springer, 2020.

[17] W. Castryck and T. Decru. An efficient key recovery attack on sidh (preliminary

version). Cryptology ePrint Archive, 2022.

[18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. Csidh: an ef-

ficient post-quantum commutative group action. In International Conference

on the Theory and Application of Cryptology and Information Security, pages

395–427. Springer, 2018.

[19] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A for-

mal security analysis of the signal messaging protocol. Journal of Cryptology,

33(4):1914–1983, 2020.

[20] J. Daemen and V. Rijmen. Aes proposal: Rijndael. 1999.

54

[21] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Secure off-the-record mes-

saging. In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic

Society, pages 81–89, 2005.

[22] W. Diffie and M. E. Hellman. New directions in cryptography. In Secure com-

munications and asymmetric cryptosystems, pages 143–180. Routledge, 2019.

[23] I. Duits. The post-quantum signal protocol: Secure chat in a quantum world.

Master’s thesis, University of Twente, 2019.

[24] M. Fetter. New Concepts for Presence and Availability in Ubiquitous and Mo-

bile Computing: Enabling Selective Availability through Stream-Based Active

Learning, volume 33. University of Bamberg Press, 2019.

[25] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz. How se-

cure is textsecure? In 2016 IEEE European Symposium on Security and Privacy

(EuroS&P), pages 457–472. IEEE, 2016.

[26] K. Hashimoto, S. Katsumata, K. Kwiatkowski, and T. Prest. An efficient and

generic construction for signal’s handshake (x3dh): post-quantum, state leakage

secure, and deniable. Journal of Cryptology, 35(3):1–78, 2022.

[27] K. Igoe, D. McGrew, and M. Salter. Fundamental Elliptic Curve Cryptography

Algorithms. RFC 6090, Feb. 2011.

[28] D. Jao and L. D. Feo. Towards quantum-resistant cryptosystems from super-

singular elliptic curve isogenies. In International Workshop on Post-Quantum

Cryptography, pages 19–34. Springer, 2011.

[29] D. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Mes-

sage Authentication. RFC 2104, Feb. 1997.

[30] D. H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Deriva-

tion Function (HKDF). RFC 5869, May 2010.

[31] M. Marlinspike and T. Perrin. The x3dh key agreement protocol. Open Whisper

Systems, 283, 2016.

[32] M. Marlinspike and T. Perrin. The sesame algorithm: session management for

asynchronous message encryption. Revision, 2:2017–04, 2017.

55

[33] D. McGrew. An Interface and Algorithms for Authenticated Encryption. RFC

5116, Jan. 2008.

[34] D. Moody and D. Shumow. Analogues of vélu’s formulas for isogenies on al-

ternate models of elliptic curves. Mathematics of Computation, 85(300):1929–

1951, 2016.

[35] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539,

May 2015.

[36] J. Pascal. Linphone instant message encryption v2. 0 (lime v2. 0). 2018.

[37] T. Perrin. The xeddsa and vxeddsa signature schemes. Specification. Oct, 2016.

[38] T. Perrin and M. Marlinspike. The double ratchet algorithm. GitHub wiki, 2016.

[39] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[40] A. Straub, D. Gultsch, T. Henkes, K. Herberth, P. Schaub, and M. WiBfeld.

Xep-0384: Omemo encryption. XMPP Extension Protocol, XEP, 384, 2009.

[41] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith.

Sok: secure messaging. In 2015 IEEE Symposium on Security and Privacy,

pages 232–249. IEEE, 2015.

56

Appendix A

DIFFIE-HELLMAN KEY EXCHANGE

Diffie-Hellman Key Exchange [22] is a public-key protocol that allows two parties to

share the secret key over an public channel. In this protocol, firstly, both of the parties

agree on a finite cyclic group G in mod p where p is prime and generator g in G.

Then each other of parties selects a random number between [0, p− 1], these random

numbers are their private keys. Let a is random number of Alice and b is random

number of Bob. They compute their public keys A = ga mod p and B = gb mod p

then send them to each other. Alice takes B mod p and computes;

Ba = (gb mod p)
a

mod p = gab mod p

Similarly, Bob takes A mod p and computes

Ab = (ga mod p)b mod p = gab mod p

Computed gab mod p is the shared secret key for parties.

Figure A.1: Diffie-Hellman Key Exchange

57

58

Appendix B

ECDH KEY EXCHANGE

ECDH[27] is a key exchange protocol that allows the private key to be shared between

two parties over a common open channel. It is a type of Diffie-Hellman protocol that

provides key exchange using elliptic curve cryptography.

In ECDH, like Diffie-Hellman protocol firstly, both of the parties agree on elliptic

curve over a finite field Fp with generator point G and order p. Then each other of

parties selects a random number between [0, p − 1], these random numbers are their

private keys. Let a is random number of Alice and b is random number of Bob. They

compute their public keys A = a · G and B = b · G then send them to each other.

Alice takes B and computes the point

(x, y) = B · a = (b ·G) · a

Similarly Bob takes A and computes the point

(x, y) = A · b = (a ·G) · b

The x coordinate of the point (x, y) is the shared secret key for parties.

59

60

Appendix C

AES

AES[20] is a symmetric block cipher encryption algorithm. While AES takes a fixed-

length 128-bit block, it can take keys of three different lengths; 128, 192 and 256 bits.

Depending on the key length respectively, it has 10, 12 and 14 rounds. In each round

there are 4 steps;

- SubBytes: In this step, each byte is replaced with another byte using a sub-

stutioin box.

- ShiftRows: It is a transposition step. The last three rows are shifted a certain

number of steps cyclically.

- MixColumns: It provides linear mixing by combining the four bytes in each

column.

- AddRoundKey: This step implement bitwise XOR to each byte of the state

with corresponding byte of the round key.

Only AddRoundKey is applied before the first round, SubBytes, ShiftRows,

MixColumns and AddRoundKey are applied respectively in all rounds except the

last round. In the last round MixColumns is not applied, SubBytes, ShiftRows

and AddRoundKey steps are applied respectively.

61

62

Appendix D

CHACHA20

Chacha [13] is a modification of stream cipher Salsa20. The Chacha’s difference

from Salsa is that it uses a new round function to increase diffusion and performance.

Chacha takes 256-bit keys, 32-bit initial counter, 96-bit nonce and 128-bit constant.

All of these values are divided into 32 bit and placed in a matrix like this.
constant constant constant constant

key key key key

key key key key

counter nonce nonce nonce

Then, each round "Quarter-round(QR)" is applied. Quarter-round is a function as

defined;

QR(a, b, c, d) =

a+ = b, d⊕ = a, d <<<= 16

c+ = d, b⊕ = c, b <<<= 12

a+ = b, d⊕ = a, d <<<= 8

c+ = d, b⊕ = c, b <<<= 7

(D.0.1)

In the odd number round QR is applied to columns, in the even number round QR is

applied diagonals. If we index the matrix as follow;

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

QR is applied in odd number round as follow;

63

QR(0, 4, 8, 12)

QR(1, 5, 9, 13)

QR(2, 6, 10, 14)

QR(3, 7, 11, 15)

in even number round as follow;

QR(0, 5, 10, 15)

QR(1, 6, 11, 12)

QR(2, 7, 8, 13)

QR(3, 4, 9, 14)

Chacha20 [35] is a instance of Chacha where 20 rounds are used. After obtaining the

key, the key and plaintex are added bitwise XOR to get ciphertext.

64

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Related Works
	Our Contributions
	Organizations

	PRELIMINARIES
	Notation
	Definitions
	Cryptographic Hash Functions
	HMAC (Message Authentication Code Mechanism Based on Cryptographic Hash Function)
	KDF (Key Derivation Function)
	HKDF (HMAC-based Extract-and-Expand Key Derivation Function)
	AEAD (Authenticated Encryption with Associated Data)

	Post-Quantum Cryptographic Algorithms
	KEM(Key Encapsulation Mechanism)
	SIDH(Supersingular Isogeny Diffie Hellman)
	CSIDH(Commutative Supersingular Isogeny Diffie-Hellman)

	SIGNAL PROTOCOL
	Key Exchange
	Double Ratchet

	Encryption

	SIGNAL AND SIGNAL BASED PROTOCOLS
	SIGNAL
	Key Exchange
	Double Ratchet

	Encryption

	LINPHONE
	Key Exchange
	Double Ratchet

	Encryption

	XABBER
	Key Exchange
	Double Ratchet

	Encryption

	WIRE
	Key Exchange
	Double Ratchet

	Encryption

	ELEMENT (RIOT.IM)
	Key Exchange
	Double Ratchet

	Encryption

	Post-Quantum Algorithms for Signal and Signal Based Algorithms
	CONCLUSION
	REFERENCES
	Diffie-Hellman Key Exchange
	ECDH Key Exchange
	AES
	ChaCha20

